Through the Twitter Glass: Detecting Questions in Micro-Text
نویسندگان
چکیده
In a separate study, we were interested in understanding people’s Q&A habits on Twitter. Finding questions within Twitter turned out to be a difficult challenge, so we considered applying some traditional NLP approaches to the problem. On the one hand, Twitter is full of idiosyncrasies, which make processing it difficult. On the other it is very restricted in length and tends to employ simple syntactic constructions, which could help the performance of NLP processing. In order to find out the viability of NLP and Twitter, we built a pipeline of tools to work specifically with Twitter input for the task of finding questions in tweets. This work is still preliminary, but in this paper we discuss the techniques we used and the lessons we learned.
منابع مشابه
A Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملText Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملDesign and Test of the Real-time Text mining dashboard for Twitter
One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...
متن کاملShort Text Representation for Detecting Churn in Microblogs
Churn happens when a customer leaves a brand or stop using its services. Brands reduce their churn rates by identifying and retaining potential churners through customer retention campaigns. In this paper, we consider the problem of classifying micro-posts as churny or non-churny with respect to a given brand. Motivated by the recent success of recurrent neural networks (RNNs) in word represent...
متن کامل